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\ Abstract !
N

- Solutions of stochastic differential equations having differentials of

N -

bounded variation processes on the right hand side can be defined by means of

EaE

LebesguerStieltjes integrals or by continuous extension of Sticltjes integrals. Both e

solutions are compared here and formulas that extend the Wong-Zakai theorem 0

. {
are obtained. b
) 5

oy
Se e

I

Key words and phrases: stochastic equations, Stratonovich integration,
Wong-Zakai Theorem. .
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§1. Introduction

e - -
r'.".. R A A

Solutions of stochastic differential equations having differentials of

bounded variation processes on the right hand side are usually defined by

4
means of pathwise Lebesgue-Stieltjes integrals (see, for example, Meyer [2]). :.

Partially motivated by stochastic control problems we have introduced a ‘E*

different idea of solution in Ferreyra [1]. With this notion, the change of i%

variables formula for solutions of stochastic differential equations driven by :;

certain semimartingales is not complicated by the jumps of the processes :1

involved. In fact, our interpretation is an extension of the concept of solution EE

of stochastic differential equations in Stratonovich sense, together with the usual ':'

change of variables formula. Moreover, robustness in the driving process is :;",

&

built into this definition of solution. Hence results complementary to those E:

considering approximation of driving martingales such as in Protter [4] and ;

Picard [3] follow. i::

In this paper we obtain formulas relating both definitions of solutions. :':

These formulas are in the vein of the theorems of Wong-Zakai [5]. i

We introduce the necessary notation and definitions in Section 2 along ':;

with some material from Ferreyra [I]. We explain the goal of this paper once :‘:'E

more at the end of Section 2. In Section 3 a simple example is presented. 3

Finally, Section 4 gives several formulas of the Wong-Zakai type. .:

(]

)

‘ §2. Notation, prerequisites and hypotheses ‘
- Let (QF,P) be a complete probability space together with an increasing ‘
family of sub o-algebras F, 0 € t € T < =, such that ¥, contains all P-null :}

elements of ¥, and ¥, 0 € t ¢ T, is right-continuous, that is, ¥, = F .+ -K‘ndf., ":‘

-
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for all t :::
Two processes X(t), and Y(t), 0 € t ¢ T, are identified if they are - :;:
indistinguishable, i.c., for almost all w € 1 the equality X(tw) = Y(t,w) holds : ":E
for all t. A process with paths which are continuous on the right E:Y
(respectively, left) and have limits on the left (respectively, right) will be called ;
corlol (respectively, collor). Other authors use the French versions cadlag and Ei
caglad respectively. We assume that all martingales (but not all processes) are ",'6:
corlol. If X(1), 0 € t € T is a corlol or a cadlag process, then AX(t) %
denotes the jump X(t*) - X(t7) at t. Two o-fields on [0,T}] x Q are of :::E
importance to us. The optional o-field I, which is generated by the family of ‘\?4:
all adapted corlol processes and the predictable o-field Zp which is generated -‘
by the adapted. collor processes. A process X(t), 0 € t € T, is said to be ;EEE
optional (respectively, predictable) if it is I;,-measurable (respectively, :':.::
tp-mcasurablc). A process is said to be of bounded variation if it is adapted, [
corlol, and it has paths of bounded variation. A process of bounded variation .f::%
A(t), 0 € t ¢ T, is said to be of integrable variation if EI::IdA(SH < @ It v
is assumed that A(t) = 0, t < 0. If A(t), 0 € t € T is of integrable .
varjation and H(t), 0 ¢t €T, is an optional process such that ‘i:{:
E[;|H(s)| [dA(s)| < =, then the stochastic integral I(t) = J:H(s)dA(s) is well R
defined as a pathwise Lebesgue-Stieltjes integral (cf. Meyer [2], p.258). The -,
process I(t), 0 € t € T, turns out to be adapted, continuous on the right and of
integrable variation. An adapted process M(t), 0 € t € T, vanishing at zero is : '.‘“
called a local martingale if there exist stopping times T, t T such that the ) :3;
stopped process MT"(t) = : M(t A T) are uniformly integrable martingales. An ‘:'
adapted process Z(t) is a semimartingale if it admits a decomposition of the :‘i::
3
X
[ )
c‘:‘

i (
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form Z(t) = Z(0) + M(t) + A(t), where M(1) is a local martingale vanishing
at zero, and A(t) is a process of bounded variation vanishing at zero. If Z(t) ' "k,
is a semimartingale, Z%(t) will denote its continuous part. If M(t) 1is a square X
integrable martingale we let <MM>(t) denote the unique increasing predictable 1
process such that <MM>(0) = M*0) and M¥t) - <M\M>(t) is a martingale. If o
M(t) and N(t) are both square integrable martingales, then <M,N>(t) = ::.‘
{<M + N, M + N>(t) - <MM>(t) - <N,N>(t)) is the unique predictable process O
of integrable variation such that <MN>(0) = M(O)N(0) and M(t)N(t) - K
<M,N>(t) is a martingale. We are ready now to -state Ito’s rule for oy

semimartingales. O

Theorem (Meyer [2], p. 301): Let Z(t) be an R°-valued process such that each bet
one of its components Zit), i = 1,--..n, is a semimartingale. Let F € CY(R). "
Then F(Z(t)) is a semimartingale and 3

n ot F s P
(1 F(Z(t)) = F(Z(0)) + £ I+'ax—_ (Z(s)AZ'(s) o
0 1

i=1

n t 32F L “:
+ %Z I ET (Z(s7)) d<Z',Z%(s) b
=1 Y0 9%%,; %

n oF
+ L (F(Z(s)) - F(Z(s)) - L . (Z(s7))BZ(s)).
O<s€t i=1 9%

Next, we describe results obtained in Ferreyra [1]. The meaning of the
expression

J
(2) dxX(t) = f(X(t))°du(t) + g(X(t))dt + k OV(X(t))°dWV(t)
v=1 L)
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will be given below when we define what is meant by solving (2) with initial
condition

(3) X(0) = X.

Let the process (WXt),---,W)(t)), 0 € t € T, be a given J-dimensional Brownian
motion. Assume that wu(t), 0 € t € T, belongs to the set U of real valued,
uniformly bounded, collor processes. Assume, without loss of generality, that all

processes v € U satisfy v(0) = 0. Assume that u(t) = 0, for t < 0. The

unknown process X(t), O € t € T, has values in R®. Furthermore, assume 3

::‘:

(H1) E|X|P < = for some p > 2, :::‘

s‘l:

(H2) [ € CXR"), f, € CX(RY), B

(H3) g € CLR), and M

i

M

(H4) o, € CYRY), v =1,..-J. ,;3'
W

3

Let X denote the set of adapted real valued processes wv(t), 0 € t € T, "

having Lipschitz paths with a uniform Lipschitz constant. If wu(t) = v(t) € &, lﬁ

then X(t) is said to solve (2) if o

3

dv J ::::

4) dX(t) = £(X(1) ;(t)dt + g(X(1)dt + I o (X(1)) ° dWY(t) .::;

v=1 '.::

in Stratonovich sense. It is well known that for such v(t) € £ the problem 4

(3) - (4) has a unique solution. This concept of solution is extended to allow -f
all u € U as follows. v

Definition 1: An R°-valued process X(t), 0 € t € T, is said to be a solution of

r e
.5 lr,

(2) - (3) if there exists a map I : [0,T] x U x 1 < R* such that

(D1) for each v € U, I(t,v), 0 €t € T, is collor,

- -uw . . . [y o LIS IS - " ey, w
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e
R =5-
, - (D2) if v € &, then the process TI(t,v) solves (4) in Stratonovich sense,

(D3) if v € U and (vj) is a uniformly bounded sequence of elements in U

such that for every t, 0 € t € T, vj(t) = v(t), as., then for each t,
< E[I(ty) - T(tv)[2 = 0, a5 j =
' (D4) T(tu) = X(1), 0 €t € T, and
B
B (DS) for all v € U, I(0,v) = X.
R
,e:;:
[A sl
The extension from £ to U is aided by the following.

“w .
';::" Lemma 1 (Ferreyra [1]): Let u € U, and let u; (t) = jf u(s)ds. Then (uj}
3 £-1/;
:E‘.': is a uniformly bounded sequence of elements in L such that for each t,
w
- 0 ¢t €T, uft) = ult), as. as j = =
rl‘.'l
R
R
’);}: Given u € U, the problem (2) - (3) is shown to have a unique solution in
%:‘,o

Ferreyra [1]. We sketch here the proof of existence. Let F : R x R - R® be
';"‘
i"‘
:q::, the flow of f, that is, the solution of gg(s,x) = f(F(s,x)), F(O,x) = x. Let
i
0 - -1 - -1
it gsx) = [BEsx] gFx), and Gysx) = [BE(s,x)] ofF(s.x). Then T s
W) defined by
4 »
?;4 ) I(t.v) = F(v(t)Y(1)),
k-l .
I where Y(t) is the process with continuous paths satisfying
o .
‘ (6) dY(t) = g(v(t),Y(t))dt + L '5\,(V(t).Y(‘))°de(t),
. v=1
Y
_ ) Y(0) = X.
;:;q; . The proof of (D2) follows easily by application of the rule for change of
!"l
§
;:::" variables for Stratonovich integrals. The proof of (D3) is a little more
o
ﬁt}s: complicated. Basically, it involves estimates for F, its partial derivatives of
,;,::
N
::’::
Syt
Er'.‘

M)
i 4, Ly *

. . . - " » - NP,
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first order, and estimates for Y(t). The reader is referred to Ferreyra [1] for
more details.

Finally, we restate the goal of this paper. We intend to find an
expression for X(t), the solution of (2) - (3), in terms of integrals of

Lebesgue-Stieltjes and Ito type such as those appearing in (1).

§3. A simple cxample
To clarify the relation between (1) and (2) we consider the following
deterministic example. Let T = 3, u™ = 1 + l,q, and ut = Lig * lasp
where for A C {0,3)], 1, decnotes the characteristic function of the set A.
Consider the 2-dimensional system of the type of (2) - (3)
dX(t) = 1 ° du(t), xX0) = 0,
dX(t) = XX (1)) ° du(v), X%0) = 0,
where  ¥(x) = 3x2
The solution of this system is computed using Definition 1 as follows.
Let uj(t) = j(t-1 + l/j)l(l_m.',](t) + j(t-2 + l/j)l(z-l/j,z](t) + u(t). Then solve by

standard methods
ax¥o = 3 (g ar XX0) = 0
i dt ’ j ’
du.
dx,?(:) - «x;(t)) d—tJ(t)dt, x}(O) - 0.

Finally, take the limit as j - =« Hence

Xj(t) = u(n), Xjt) = J: Wu,(s))duy(s) = [u,-(t)]’.

XYt = u(), X0 = [uv]®
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\' ° On the other hand the 2-dimensional system of the type of (1) - (3) v
dyl(t) = du*(t), Y(0) = 0

dY?(t) = &Yt )dut(t), Y?0) =0

c e
e T

is solved by means of Lebesgue-Stieltjes integrals as

.

Yi(t) = ut(v),
¢ ¢

Y3(1) = Id}(u*(s'))du‘*(s) = I3[u+(s')]’du+(s).
0 0

- -

P .(
: "
L Thus X%t) jumps 1 unit at t = [ and 7 units at t = 2, while Y¥t) '
\ jumps O units at t = 1 and 3 units at t = 2. The difference between X*(t) A
1]
' and YZ¥t) can be deduced from (1). In fact, \
by :
X)) - YX) = I {[u"’(s)]3 - [u'*(s')]3 - 3[u+(s')]’Au+(s)] - AX¥(v) ‘
O<s €t :
3 ‘Q
b = I {x’(s+) - X¥s) - 3[x’(s)]’Au'(s)} -3[X*(1))*su(). .
# & O<e<t N
y We will prove below several generalizations of this formula. «
l. (]
[) d
) §4. Stochastic integrals and stochastic differential equations )
i In the previous section we found a formula relating X%t) =
; = lim L‘, qb(uj(s))duj(s) and the Lebesgue-Stieltjes integral Y1) = '
s i-= b
: = [t wWu*(s))dut(s). More general situations are treated here. H
)
3 We assume throughout this section that w(t), 0 € t € T, is a fixed proces !
K »
in U such that it has paths of bounded variation. Hence the process u(tt), !
L) J
P 0 €t < T, is well defined and it is of bounded variation. Let uj(t),
F j=12...,0 €t €T, be a sequence of processes in & approximating u(t)
)
in the sense of Lemma |, that is, for each 0 €t € T, uj(t) converges to  u(t),
N
as. as j - =
y '
Y )
; .
0 ]
K
i X
""-“‘n‘f'n".‘a"'s’?‘ WA, |‘.‘|' l'- .Al‘i.*o,v - I‘.‘.!‘a.l‘l. l.l" . % v, . " 0 ) ) )
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Theorem 1: Let ¢ = ¢(t,x) be a real valued function in CY[0,T] x R). Then,
for each 0 €t ¢ T, - N

t t . !
tim [ g(su6Ndug®) = (000" + [ _e(su(sduts ) R}
ot

j—.@ 0

+ I [Usush) - Wsus) - e(sus)aus)] - etu)ut), %3

O<s<t l*

where Y(t,x) = Ig ¢(t,8)dE. ¥

Proof: Let ¢ ©be defined as above. Then, by the calculus for Riemann-
Stieltjes integrals 'A‘
t t v

Wt ) = [0 ws.udus) + L B (s.u (s)as.
Since for each 't, 0 €t € T, uj(t) = u(t), a.s. as j = = then our hypotheses on l::

¢ and the Dominated Convergence Theorem imply

t t
(8) ¥(t,u(t)) = lim I o(s,u;(s))duy(s) + I 8L (s,u(s))ds. o
J 0 0

But (1) with n = 2, ZXt) = t, ZXt) = u(t*) imply o

t .
%) wWtu(tt)) = ¥Oo,u(0*) + I +v(s,u(S))du(S") + I 3{‘* (s,u(s))ds Y
(] 0 A

L¥ P8

+ I [Wsus?) - dsaus)) - es.uls)aucs)].

o<s€t

Xy
~ 74

Comparison of (8) and (9) prove the desired formula.

L3

The above theorem is further generalized as follows. Let «oB,, € C([0,T)),

]® TN

.
]

vae=]_...J and define

o,
e

t J ot
Si(t) = I ofs)duy(s) + I I B (s) ° dAWVY(s).

0 v=10

ot

o L U O OO o M D oo L TR O T T T T N, o Tl
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Here o« and B,, are deterministic functions, the first integral is pathwisc of
Riemann-Stieltjes type and the integrals with respect to WY are of
Stratonovich (equal to Ito in this case) type. Let ¢ = ¢(t.x) € C¥10,T] x R

and consider the stochastic integral
t
I #(s,5(s))°dS (s) = : rv(S.S,-(S))o(s)du,-(S)
0 0
J
+ L r ®(s.S,(s))B\(s) © dWYs).
0

v=1

Finally, define the (collor) process

t J pt
S(t) = Ic(s)du(s) + L I B (s)dWV(s),
0 v=1°0

where the first integral is of Riemann-Stieltjes type and the other J integrals

are of Ito (equal to Stratonovich in this case) type.

Theorem 2: Let ¢ t,x) = I’.f(p(t,!)d{. Then, for each 0 € t € T, the following
relation holds.
t

J pt
L HESENASET) + 4 X I B¢ (5,5(5))82(s)ds
V=1

t
}l‘l’ Itp(s.Sj(s)) ° dSs) = ¥(0,S(0%)) +I
)

0 0

+ L [WsS6Y) - WsSE)) - ¥(s.S()aS(s)] - @(tS(t)AS(t).

O<s<t

Proof: By the calculus for Stratonovich integrals

t
ut.S,(t)) = Ioo(S.Sj(S)) ® dSi(s) + I; g (5,5;(s))ds.

Theorem 1 implies that

t t t
}132 Ic(s)duj(s) = a(O)u(O"')+I +o(s)du(s+) - oft)Au(t) = Ie(s)du(s).
0

0 0
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- %
Then, for each 0 €t ¢ T, Sj(t) - S(t), as. as j - « Hence the Dominated ¢

Convergence Theorem implies .

t
(10) #eS) = tim [ e(s5 (o) © a5 + r & (s.S(0ds.
0 0

On the other hand, (1) with n = 2 and ZYt) = t, Z¥t) = S(t*) give o

t

I :
(11 W(t,S(t%)) = $(0,5(0%)) + I +'4’(~°».S(S))dS(=‘»+) +4 I I S',f (5,5(s))B}(s)ds N
0

0 v=1

t Wy
o[ B esods ¢ I [UsSEM - WsSE) - wsSENESE)]. X
0

OO0
0<et M

. "
Putting (10) and (11) together we obtain our result. il

1.9,
Theorem 3: Let X(t), 0 € t € T, be the solution of (2) - (3) in the sense of ot

)
Definition 1. Then 2

t t I a0
(12) X(t) = X + I+f(X(s))du(s+) + Ig(X(s))ds +I I o (X (s))dWV(s) A
0 ] v=1‘0 '

n J t
+3+L & Ig,%‘(X(s))a{,(X(s))ds + I AX(s) - I f(X(s))bu(s). "’—if
=1v=1 %0 ! 0€s<t O<s €t

Proof: The solution of (2) - (3) can be expressed, according to (5)- (7), as -

(13) X(t) = F(u(t), Y(1)), ' {
where F is the flow of f and Y(), 0 € t € T, is the continuous ?.‘;

semimartingale solution of Y(0) = X, dY(t) = g(u(t),Y(t))dt +

J
+z 3\,(u(t),Y(t))°dWV(t). As indicated at the beginning of this section, the N
v=1 o

process u(tt), 0 € t < T, is of bounded variation. Then, it follows from (1) ]

RN ! Vg ity hgt
"» . t.'l-?:!“ "‘ ; Y'.’l!‘.ﬁ.
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that
t n pt
X = Fuohyon + [ wo.veme + I [ ey o)
0 =10 !

t
+4x I Fh— (u(s),Y())d<Y', Yi>(s)
0 1

ij=1
+ I [Flus™).Y6) - Fue)Ye) - & ws),YE)u)].

The following equalities are used to replace the various terms in the above
equation. It is easy to see that

F(u(s*),Y(s)) - F(u(s),Y(s)) = aX(s),

F(u(0*),Y(0)) = X + AX(0),

X(t*) = X(t) + AX(t),

8E (u(s),Y(s)) = f(F(u(s),Y(s)) = £(X(s),

8E (u(s).Y(S)EU(s)LY(S) = g(X(s),

8 (u(s), YT u(s),Y(s)) = o X(s)),

and
J n aai
I GONO > Sl COMOLYCOR(OIE
i=1 v=1 j=1

- I %,9%; u(s),X(s)) d<Yi,Yd>(s) + z I 3—\‘ (X(s)) el (X(s)).
ij=1 v=1 i=1 !

In the last equality we used the identity obtained from differentiation of

Fx(s,x)Fx(s,x)” = I with respect to x. The proof of (12) is then concluded.

Acknowledgement: The author wishes to thank P. Dupuis for his valuable

comments.
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